A Critical Review of Trypsin Digestion for LC-MS Based Proteomics

نویسندگان

  • Hanne Kolsrud Hustoft
  • Helle Malerod
  • Steven Ray Wilson
  • Leon Reubsaet
  • Elsa Lundanes
  • Tyge Greibrokk
چکیده

Proteomics is defined as the large-scale study of proteins in particular for their structures and functions (Anderson and Anderson 1998), and investigations of proteins have become very important since they are the main components of the physiological metabolic pathways in eukaryotic cells. Proteomics increasingly plays an important role in areas like protein interaction studies, biomarker discovery, cancer prevention, drug treatment and disease screening medical diagnostics (Capelo et al. 2009). Proteomics can be performed either in a comprehensive or “shotgun” mode, where proteins are identified in complex mixtures, or as “targeted proteomics” where “selective reaction monitoring” (SRM) is used to choose in advance the proteins to observe, and then measuring them accurately, by optimizing the sample preparation as well as the LC-MS method in accordance to the specific proteins (Mitchell 2010). Whether “MS-based shotgun proteomics” has accomplished anything at all regarding clinically useful results was recently addressed by Peter Mitchell in a feature article (Mitchell 2010), and he states that the field needs to make a further step or even change direction. Referring to discussions with among others John Yates and Matthias Mann, Mitchell addresses the failure in the search for biomarkers as indicators of disease, the difficulties of protein arrays, the uncertainty of quantification in “shotgun proteomics” (due to among others the efficiency of ionization in the mass spectrometers), database shortcomings, the problems of detecting post translational modifications (PTMs), and finally the huge disappointment in the area of drug discovery. The field points in the direction of targeted proteomics, but targeted proteomics will not be the solution to all our questions and comprehensive proteomics will still be needed. In order to get as much information, with as high quality as possible, from a biological sample, both the sample preparation and the final LC-MS analyses need to be optimized. The most important step in the sample preparation for proteomics is the conversion of proteins to peptides and in most cases trypsin is used as enzyme. Trypsin is a protease that specifically cleaves the proteins creating peptides both in the preferred mass range for MS sequencing and with a basic residue at the carboxyl terminus of the peptide, producing information-rich, easily interpretable peptide fragmentation mass spectra. Some other proteases can be used as well, such as Lys-C, which is active in more harsh conditions with 8 M urea, and give larger fragments than trypsin. Asp-N and Glu-C are also highly sequence-

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased proteome coverage by combining PAGE and peptide isoelectric focusing: Comparative study of gel-based separation approaches

The in-depth analysis of complex proteome samples requires fractionation of the sample into subsamples prior to LC-MS/MS in shotgun proteomics experiments. We have established a 3D workflow for shotgun proteomics that relies on protein separation by 1D PAGE, gel fractionation, trypsin digestion, and peptide separation by in-gel IEF, prior to RP-HPLC-MS/MS. Our results show that applying peptide...

متن کامل

Optimization of mass spectrometry-compatible surfactants for shotgun proteomics.

An optimization and comparison of trypsin digestion strategies for peptide/protein identifications by microLC-MS/MS with or without MS compatible detergents in mixed organic-aqueous and aqueous systems was carried out in this study. We determine that adding MS-compatible detergents to proteolytic digestion protocols dramatically increases peptide and protein identifications in complex protein m...

متن کامل

Histology-Directed Microwave Assisted Enzymatic Protein Digestion for MALDI MS Analysis of Mammalian Tissue

This study presents on-tissue proteolytic digestion using a microwave irradiation and peptide extraction method for in situ analysis of proteins from spatially defined regions of a tissue section. The methodology utilizes hydrogel discs (1 mm diameter) embedded with trypsin solution. The enzyme-laced hydrogel discs are applied to a tissue section, directing enzymatic digestion to a spatially co...

متن کامل

Comparison of Heavy Labeled (SIL) Peptide versus SILAC Protein Internal Standards for LC-MS/MS Quantification of Hepatic Drug Transporters

We studied the precision of quantification of organic anion-transporting polypeptide 1B1 (OATP1B1), OATP1B3, OATP2B1, and P-glycoprotein (P-gp) in human livers by surrogate peptide based LC-MS/MS approach using two different internal standards: stable isotope labeled peptide (SIL) versus stable isotope labeled protein (SILAC). The SIL peptides were procured commercially and the SILAC proteins w...

متن کامل

Rapid protein identification using monolithic enzymatic microreactor and LC-ESI-MS/MS.

A monolithic enzymatic microreactor was prepared in a fused-silica capillary by in situ polymerization of acrylamide, glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA) in the presence of a binary porogenic mixture of dodecanol and cyclohexanol, followed by ammonia solution treatment, glutaraldehyde activation and trypsin modification. The choice of acrylamide as co-monomer was foun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012